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As the EUROfusion consortium communicates its transition from operating the science-
driven, lab-based International Thermonuclear Experimental Reactor (ITER) to the industry-
driven DEMO-class reactors, so evolve requirements for the liability, neutron radiation
resistance, accuracy, and operability of high-temperature magnetic diagnostics systems
for the control of plasma.

 Lukasiewicz - IMiF has introduced a new graphene brand to answer these challenges [1].
GET®, or Graphene Epitaxy Technologies, offers an innovative graphene-based sensory
platform for magnetic field detection [2-5].

The platform takes advantage of transfer-free, p-type, in-situ hydrogen-intercalated,
quasi-free-standing graphene epitaxially grown on semi-insulating SiC using the Chemical
Vapor Deposition method [6-9]. It is protected against environmental conditions by amor-
phous, atomic-layer-deposited, aluminum oxide passivation, synthesized from trimethyla-
luminum and deionized water at 770 K [10-11]. The sensors come in two variants. The
one on semi-insulating, vanadium-compensated, on-axis 6H-SiC(0001) offers current-mode
sensitivity of 140 V/AT up to 573 K, the other on semi-insulating, high-purity, on-axis
4H-SiC(0001) offers 80 V/AT but up to 770 K.

The 4H-SiC device performance is further boosted by pre-epitaxial ion implantation
that reconstructs the SiC defect structure and eliminates deep electron traps related to
silicon vacancies occupying the h and k sites of the 4H-SiC lattice. The modification sup-
presses the thermal build-up of a detrimental electron channel and improves the thermal
stability of the sensor [12]. The platform is greatly resistant to fast-neutron radiation of
a fluence of 6.6 × 1017 cm-2 and possesses a self-healing property [13].
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