Vanishing bulk heat flow in the nu=0 quantum Hall ferromagnet in monolayer graphene

R. Delagrange¹, M. Garg¹, G. Le Breton¹, A. Zhang¹, Q. Dong², Y. Jin³, K. Watanabe⁴, T. Taniguchi⁴, P. Roulleau¹, O. Maillet¹, P. Roche¹, and F.D. Parmentier¹

¹ Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette cedex, France

² CryoHEMT, 91400 Orsay, France

³ Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France

⁴ National Institute for Materials Science, Tsukuba, Japan

Under high perpendicular magnetic field and at low temperatures, graphene develops an insulating state at the charge neutrality point. This state, dubbed nu=0, is due to the interplay between electronic interactions and the four-fold spin and valley degeneracies in the flat band formed by the n=0 Landau level. Determining the ground state of nu=0, including its spin and valley polarization, has been a theoretical and experimental undertaking for almost two decades. Here, we present experiments probing the bulk thermal transport properties of monolayer graphene at nu=0, which directly probe its ground state and collective excitations. We observe a vanishing bulk thermal transport, in contradiction with the expected ground state, predicted to have a finite thermal conductance even at very low temperature. Our result highlight the need for further investigations on the nature of nu=0.

Delagrange, et al., under review at Nature Physics

