Charge-4e and charge-6e flux quantization and higher charge superconductivity in kagome superconductor ring devices

Jian Wang

Peking University, Beijing, China

Despite of the various forms of superconductivity, conventional or unconventional, topologically trivial or nontrivial, the condensation of charge-2e Cooper pairs has remained the origin and character of all superconductivity, as described by the BCS theory. We report our experimental discoveries of the charge-4e and charge-6e superconductivity in ultrathin ring devices fabricated using the kagome superconductor CsV_3Sb_5 [1]. These new phase coherent states are discovered by the observation of the quantized magnetic flux in units of h/4e and h/6e in systematic magneto-transport measurements. Our observations provide direct experimental evidence for the existence of phase coherent paired quantum matter beyond the charge-2e superconductors, and provide ground work for exploring the physical properties of the charge-4e and charge-6e superconductivity as unprecedented phases of matter beyond the condensation of Cooper pairs described by the BCS theory.

[1] Jun Ge[#], Pinyuan Wang[#], Ying Xing, Qiangwei Yin, Anqi Wang, Jie Shen, Hechang Lei, Ziqiang Wang, and **Jian Wang***. "Evidence for multi-charge flux quantization in kagome superconductor ring devices" arXiv: 2201.10352 to be published in Physical Review X